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Quantum Poincaré sections for two-dimensional billiards
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We show a method to extract the quantum Poincaré section corresponding to an eigenstate of a
two-dimensional billiard. This quantum Poincaré section is given in terms of the Birkhoff variables

of the problem.
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I. INTRODUCTION

In recent times the dynamics of two-dimensional (2D)
billiards has attracted great attention [1]. These are sys-
tems made of a free point particle moving in a bounded
2D region Q2. The motion of billiards shows a rich vari-
ety of phenomena, depending on the shape of their walls.
Their dynamical behavior ranges from chaotic to inte-
grable. A completely chaotic behavior appears in the
stadium billiard [2], and in the Sinai billiard [3]. This
makes billiards one of the simplest nondriven Hamilto-
nian systems that can show chaos. There is an inter-
mediate regime of nonintegrable billiards where regular
orbits (KAM tori) and chaotic trajectories coexist. In
particular, Lazutkin and others [4] have proven that any
convex billiard whose boundary is C*, n > 6, contains an
infinite family of regular orbits, and that this family has
nonzero measure in phase space. These regular orbits run
close to the boundary and accumulate upon it, and are
called the whispering gallery of the billiard. Regular or-
bits also exist in billiards whose boundaries have discon-
tinuous curvature [5], where the KAM theorem no longer
applies. There is also a family of completely integrable
billiards, namely the billiards with elliptic boundaries.
Here both the energy and the product of the angular
momenta around the two foci are conserved.

The corresponding quantum problem in configuration
space is straightforward, and reduces to the solution of
the Helmholtz equation

V2 + k%Y =0, (1)

with boundary conditions 9 |so= 0. The relevant eigen-
number is the dimensionless combination v/ Ak, where A
is the area of Q. This quantization problem has been
studied recently by many authors [6-9], and has become
one of the paradigms of “quantum chaology.” There has
been a large amount of work on the quantum wave func-
tions which show the influence of the classical unstable
periodic orbits (scars [7]}, and on the energy spectrum (8]
which evolves from Poissonian to Gaussian as the nonin-
tegrability parameter of the system increases.

In this report we want to show how to cast the informa-
tion contained in the quantum wave function into a (2D)
phase-space representation (Poincaré section), in terms
of the Birkhoff variables of the system. This gives us a
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new way of establishing the connection between different
wave functions and their underlying classical trajectories,
in the large action limit.

II. REVIEW OF BIRKHOFF VARIABLES

For the classical billiard all dynamical information is
contained in the canonical Birkhoff variables [10]. These
are defined for every bounce of the particle in the walls
by the following two parameters: the normalized oriented
arc length s measured from some reference point on the
wall to the site of the bounce (0 < s < 1), and the
cosine ¢ of the angle between the outgoing direction of
the particle and the oriented tangent to the wall on the
point of impact (=1 < ¢ < 1). The dynamics of the
billiard establishes a mapping between these variables

SnyCn = Sn41,Cn+1, (2)

which for convex C! boundaries is continuous and area
preserving. These two variables correspond to position
and its associated momentum (p;), measured over the
boundary, in some curved coordinate system where the
boundary itself has a constant coordinate value. We will
take this coordinate system to be orthogonal and con-
tinuously deformable into a polar system. To show in
a simple and intuitive way how to define these coordi-
nates we can use 2D electrostatics. We just set the wall
of the billiard to be a grounded conductor and put a
point charge anywhere in its interior. This generates an
orthogonal system given by the equipotentials and the
field lines. The coordinate along the equipotential is pe-
riodic, analogous to the angle in the polar system. We
measure it from 0 to 1 and in such a way that it coincides
with the normalized arc length s on the wall of the bil-
liard. The coordinate along the field lines is analogous to
r in the polar system and will be called p, with the con-
vention p = 1 at the boundary. The variable c is defined
by ¢ = ps/p, where p is the magnitude of the conserved
total momentum and p; is its component along s. Notice
that there is no periodicity in p,, and obviously none in
c.

The mapping of the Birkhoff variables in this coordi-
nate system is a Poincaré mapping, where we fix p = 1.
The magnitude of p, is defined by energy conservation,
and its sign changes from + to — upon impact. The phase
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space generated by the pair (s,p;,) is the cylinder S; x R,
but conservation of energy means that for any given total
momentum p only the section —p < p; < p is allowed for
the Poincaré section. Time-reversal symmetry ensures
that there is an invariance in the mapping under the re-
versal p, — —p;, making the Poincaré section symmetric
with respect to the line ¢ = 0.

III. QUANTUM POINCARE SECTIONS AND
HUSIMI DISTRIBUTIONS

Since the Helmholtz equation is in general not separa-
ble in the p, s variables, there is no known way of quantiz-
ing the billiard directly in terms of the Birkhoff variables.
Here we show a method to get the quantum Poincaré sec-
tion (QPS) corresponding to any given eigenstate of a bil-
liard, once it has been quantized in configuration space.
Let us start with a simple example. Take a circular bil-
liard of radius 1. For this case there is an immediate
separation of the wave functions in angular and radial
parts. The real eigenfunctions (ignoring normalization)
are

P(r,0) = I (kmnr) cos(mf + ¢). 3)

Here p =r, s = 6/(27), and ¢ is an arbitrary phase. To
build a quantum equivalent of the Poincaré section we
need to know the probability of finding the particle close
to the border, at an angle 6 and with angular momentum
pg. The fact that we can separate variables makes this
task easy, since the probability for any given value of r de-
pends only on 8. Therefore, the angular part of the wave
function alone can be used to construct a distribution in
the pair (s, ps). To obtain this reduced phase space in-
formation we use Husimi distributions [11], in preference
to Wigner functions [12], which are not strictly positive
and that for compact variables are different from zero
only on § stripes.

The Husimi distribution for a real one-dimensional
space is given by

Hy (g0, ko) = (g0, ko | V)|, 4)

where | qo, ko) is a coherent state centered around g
in configuration space and around kg = po/h in wave-
number space. The position representation is

1/4 _
(g g0, ko) = (#) exp [_(4_2;@292 + iko(q — qo)] )
(5)

where o /+/2 is the dispersion in position, and 1/(cv/2)
is the dispersion in wave number. For a space topolog-
ically equivalent to a circle and in terms of a periodic
variable such as the angle @ in the circular billiard, we
can introduce a periodic coherent state as [13]

oo

(@] g0, ko)per = D (g —7 | g0, ko), (6)

n=-—0oo

with 0 < ¢,¢90 < 1. It is important to note that the
coherent state so constructed is periodic only in the go
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variable, but not in the kg variable. The space defined
by (qo, ko) is a cylinder and is not bounded in the ko
direction. Generalized coherent states for a more general
compact space have been studied extensively in Refs. [14,
15].

Using these coherent states we can obtain a Husimi
distribution for the angular part of the eigenfunctions of
the circular billiard. We get (ignoring normalization and
choosing ¢ = 0)

H(8,ke) = (6, ko | ‘30577w>per|2

— e—(ke—m)202 + e—(k9+m)202

+2e=(m*+k3)o% co5(2me). (7

This function is strongly peaked around the lines kg =
+m, with a very weak oscillatory dependence on 6.
For an eigenstate with total momentum p = kk,,, the
Poincaré section in s and c peaks around ¢ = m/kpy, < 1,
since the smallest root of the Bessel function J,,(p) is al-
ways larger than m. For large m this smallest root [16],
km1 ~ m + (1.86...)m'/3 + O(1), approaches m. This"
means that the whispering gallery, which has ¢ ~ +1, ap-
pears in the circular billiard only for some highly exited
states. This behavior can be found also in billiards with
other shapes.

We cannot perform this simple separation of the wave
function for billiards with arbitrary shapes. There is,
however, an approximated separation of the wave func-
tion near the boundary, because the boundary is a nodal
line. Around p = 1 we can write

2D (p-)+O((-1D) + -,

p=1

b(p, 8)|pm1 = 0+

)

which means that locally ¥(p, s) can be separated to first
order. Therefore at the boundary we can define

=V pley- 9)
p=1
This quantity gives us the information we need to con-
struct the Husimi distribution for the Birkhoff variables.
We just compute

2

1
H(s, ky) = /0 ds'(s, ks | 8')perS(s')] (10)

and then normalize k; by the wave-number eigenvalue &
to obtain ¢. Notice that the simpler approach given by
S(s) = ¥(p, s)|p=1 is meaningless because this quantity
vanishes identically on the boundary.

We need to make some comments on the relation
between our quantum eigenfunctions and the classical
Birkhoff surface section map. We have solved the time-
independent quantum eigenfunctions which lead to in-
variant Husimi distributions on the surface section. The
classical counterpart of this invariant Husimi distribution
is an invariant solution to the Liouville equation of the
corresponding billiard system. Our Husimi distributions
are automatically invariant under the QPS mapping. On
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the other hand, we have not succeeded in constructing an
explicit quantum evolution operator which maps a time-
dependent Husimi distribution forward with the classical
surface of the section map. This quantum evolution oper-
ator is not an equal-time map and we find no simple way
of constructing it. We can in principle study the action
of this quantum evolution operator on a localized state
by constructing a wave packet on the surface section out
of our eigenfunctions and follow its evolution. However,
since we are using a finite A, the wave functions tend to
spread very fast, which makes the numerical study im-
practical.

IV. NUMERICAL RESULTS

The previously described method to find the QPS for
billiards has been tried in a particular deformation of the
circle. This billiard is given by the closed branch of the
solutions of the equation

22 +y? +exd =1 (11)

For € = 0.2 the classical phase space is shown in Fig. 1.
This phase space shows the coexistence of a large chaotic
orbit and some regular orbits. There is a period-2 win-
dow centered at ¢ = 0, which appears as a stable ver-
tical trajectory in configuration space. We can also see
clearly a stable period-3 window and the stable whis-
pering gallery of orbits close to the boundary, forming
a band near ¢ = 1. There are also some higher order
stable windows with smaller measure in phase space. If
we increase € the measure of the chaotic orbit increases,
but the stable period-2 window around ¢ = 0 does not
disappear completely. At the value € = 4/4/27 the two
branches of the solution of Eq. (11) touch at the point
z = —+/3, y = 0, which gives a discontinuity in the cur-
vature of the border. Beyond this value of € Eq. (11) does
not have closed-curve solutions.

To solve the quantum problem in configuration space

sin 8

ARC LENGTH/PERIMETER

FIG. 1. Classical Poincaré section for the deformed circu-
lar billiard z® + y? + ez® = 1, € = 0.2.

we apply a simple implementation of the diagonalization
algorithm currently used [8]. We show a few examples
of the results in Figs. 2 and 3. Figure 2 shows 10 eigen-
states of the billiard, with 30.0 < v/Ak < 31.3. These
are all the even eigenstates in this k region, and are
listed according to increasing energy. For completeness,
we include these eigenvalues in Table I. Figures 2(a) and
2(e) show the scars due to vertical stable period-2 win-
dows, and Figs. 2(b) and 2(g) those of stable period-3
windows. The largest probability densities are found in
all these cases around the caustics of the classical tra-
jectories. The caustics corresponding to windows in 2(a)
and 2(b) have swallowtail foldings, a feature that affects
the associated wave functions only for large values of
k. Figure 2(c) shows eigenfunctions associated with the
whispering gallery. Figure 2(d) follows an unstable three
cycle and Fig. 2(j) shows a scar of the unstable horizon-
tal period-2 cycle. Finally, Figs. 2(f), 2(h), and 2(i) show
seemingly chaotic eigenfunctions. All different types of
classical motion are reflected in the structure of the wave
functions contained in a small range of wave numbers.
For larger k we obtain the same types of wave functions,
with higher resolution (sharper caustics, clearly defined
swallow tails), and some other wave functions associated
with stable windows of higher periods.

The QPS’s of the wave functions shown before are
given in Fig. 3. Here we have chosen o so as to have
symmetric dispersion (Ak/2ko = As/s). There is a
very good correlation between the different QPS’s and
the quantum-classical correspondence we have found be-
tween wave functions and trajectories. In particular, the
QPS’s of those orbits identified with classical periodic
windows fall in the sections of phase space corresponding
to the associated stable islands. As shown by the figures,
the peaks of the QPS shown in Figs. 3(a) and 3(e) fall
roughly in the periphery and the center of the period-2
island, and in Figs. 3(b) and 3(g) in the periphery and
the center of the period-3 island, respectively. Those of
the wave functions shown in Fig. 3(c) fall on the whis-
pering gallery bands. More interesting are the cases of
the irregular eigenfunctions. The QPS shown in Fig. 3(d)
follows closely the unstable 3-cycle. The QPS for the un-
stable period-2, given in Fig. 3(j), peaks strongly on the
hyperbolic 2-cycle, giving a scar which is much better de-

TABLE I. Even eigenvalues for the deformed billiard in
the range 30 < VAk < 31.3. The label denotes the corre-
sponding figure in Figs. 2 and 3

Label VAk
(a) 30.1968
(b) 30.2377
(c) 30.3726
(d) 30.4154
(e) 30.5660
() 30.5980
(g) 30.7634
(h) 30.9611
(i) 31.0305
6) 31.2989
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FIG. 2. Probability densities for 10 eigenfunctions of the deformed circular billiard x + y2 + ex® = 1, € = 0.2. These are all
the even eigenstates whose eigenvalues are in the range 30.0 < v/Ak < 31.3. These states are ordered with increasing energy.



990 BRUNO CRESPI, GABRIEL PEREZ, AND SHAU-JIN CHANG 47

ROEOR!
:

(g) (h) (i)

m

I

(j)
FIG. 3. Quantum Poincaré sections for the eigenstates shown in Fig. 2.



fined in phase space than in configuration space. Finally,
the QPS’s shown in Figs. 3(f), 3(h), and 3(i) spread over
most of the chaotic basin, with some peaks that suggest
the presence of an unstable 3-cycle in Fig. 3(f) and an
unstable 5- cycle in Fig. 3(i). These periodicities are not
apparent in Figs. 2(f) and 2(i).

V. DISCUSSION AND CONCLUSIONS

Quantum Poincaré sections have been previously in-
troduced in periodically driven one-dimensional systems
using the eigenfunctions of their associated evolution op-
erator [13]. A Husimi representation of these eigenfunc-
tions gives immediately an appropriate QPS for the prob-
lem. In billiards this is not possible, since there is no
well-defined evolution operator to carry the dynamics on
the one-dimensional s variable. In this case the simplest
approach to the QPS is through the full configuration
space eigenstates. For more general cases a procedure to
obtain QPS’s has been proposed [15], but our approach
has the advantage of starting directly with the relevant
1D variable.

In the full 4D phase space of the billiard the Wigner
functions for regular eigenstates are expected to be
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largest on the 2D classical stable tori (their projections
are the caustics), and to oscillate strongly on the rest
of the 3D energy-allowed manifold [17]. Here these os-
cillations are suppressed by the coarse graining provided
by the Husimi distribution. Irregular eigenstates spread
over the 3D energy surface with enhancements on some
unstable periodic points, and avoid carefully the regions
layered with stable tori. This behavior is quite difficult
to visualize in the full 4D phase space, but can be seen
clearly in the QPS provided here. The scarring is better
defined in the QPS and allows us to distinguish periodic
components in the wave functions that are not easily rec-
ognizable in configuration space.
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